
A Comprehensive Research Article on Implementing the Hash-Based Technique of the Apriori Algorithm Using Consumer Purchase Data

Richa Shah¹, Dr. Shekhar Nigam²

¹Research Scholar, Department of Information Technology,NRI Institute of Information Science and Technology, Bhopal-India

²Associate Professor, Department of Information Technology,NRI Institute of Information Science and Technology, Bhopal-India

¹richa.shah292@gmail.com, ²drshekharnigam.nri@gmail.com

* Corresponding Author: Richa Shah

Abstract: This research study focuses on the application of a hash-based technique on the Apriori algorithm to conduct market basket analysis using consumer purchases data. Apriori discovers the most commonly purchased itemsets and drives association rule generation. However, Apriori suffers from high computational costs, candidate generation and retention, and poor performance with infrequently purchased itemsets. The hash-based technique seeks to remedy this by employing a hashing function to remove infrequently purchased itemsets from memory. The study shows that the hash-based Apriori increased the computational performance with an accurate compute of the itemset with high frequencies from a dataset of 20 transactions from a retail store of 27 unique electronic items. The study illustrates consumer buying behaviors and significant relations of the frequently purchased items, that is, printers and scanners or laptops and flashdisks. The study illustrate the value of hash-based and computational Apriori method in real word business applications.

Keywords: Apriori Algorithm, Association Rules, Transection Pattern, Data Mining, Hash-Based Technique.

I. Introduction

Understanding consumer behavior is not an option in the big data world of today; it is an essential for any company expecting to be successful in an increasingly competitive marketplace. The most effective method for analyzing hidden patterns in consumer purchases data is market basket analysis[1]. Imagine getting brought to items in a supermarket that product items are a perfect match for what you currently have in your cart. That is the application of association rule mining to market basket analysis[2].

The Apriori algorithm, a standard yet effective technique for discovering frequently occurring itemsets and generating significant rules, is one of the core principles of association rule mining[3][6]. Nevertheless, the standard Apriori technique has drawbacks despite its effectiveness, notable among them being the rapid growth of candidate itemsets with increasing data quantity. The hash-based technique turns across effective in this situation.

The hash-based technique is an effective approach development that eliminates the number of product items candidates that aren't needed by organizing hash pairings into buckets and getting minimized of those that are uncommon from the beginning[4][6]. This research paper discusses into a great deal of detail about how the hash-based technique can be practically used in real life with a dataset items based on actual consumer purchases. We illustrate every step, from generating possible itemsets to making association rules, in a way that is both technical and practical, utilizing things like laptops, routers, and transactions that are based on genuine customer behavior.

So, buckle up as we illustrate you how a simple hashing trick can significantly speed up your market basket analysis. This will help businesses make better decisions and increase their profits.

2. Background of the Apriori Algorithm

For mining frequently occurring itemsets in transactional databases, the Apriori algorithm research illustrates to be a reliable technique over time. The fundamental principle is straightforward but effective: "Any subset of a frequent itemset must also be frequent." The algorithm can iteratively create larger, more frequent itemsets from smaller ones according to its downward-closure property[3][4][5].

Finding frequent 1-itemsets, or individual items that occur frequently enough to meet the minimum support threshold, is the first step in the standard Apriori[3]. Once these are combined, possible 2-itemsets are created, their occurrences are counted, and the process is repeated for higher-order itemsets until no more frequent itemsets are discovered[5].

Although its attractive sound, the Apriori algorithm has trouble processing big data itemsets[6]. The overwhelming volume of candidate itemsets generated, particularly in the initial iterations, is the most significant obstacles[7]. The amount of memory and computational time required to process those increased size of the customers purchase item list[5].

Acknowledging these drawbacks, researchers proposed improvements such as the hash-based technique, which effectively eliminates possible options through the utilization of hash functions[8]. This modifications enhances Apriori more scalable and effective for real-world applications by minimizing the overall computational load and speeding up the entire procedure[9].

3. Understanding the Hash-Based Technique

So, what exactly is the hash-based technique with regard to the Apriori algorithm subsequently? Consider it as the early stage addition of an intelligent filter. Instead of counting every possible pair blindly when generating candidate 2-itemsets, a hash function is used to hash each pair into a bucket[4][8]. The Each bucket's count is increased correspondingly.

Buckets that don't meet the minimum support threshold are completely eliminated after this hashing operation is completed[3]. This saves valuable time and memory by ensuring that any itemset hashed into those low-support buckets won't be taken into consideration further.

The hash-based technique essentially functions as a club bouncer, allowing only those itemsets that have a possibility of being frequent to entry and rejecting the others. Implementing this technique makes the Apriori algorithm more effective and leaner, particularly when working with big transactional datasets.

Another advantage is that utilizing more complex hash functions or multiple hash tables, the hash-based technique can be easily expanded to higher-order customer product itemsets[2][4]. This ensures that elimination can be included in all of the algorithm's iterations and is not just restricted to the initial execution.

4. Dataset Description

We'll utilize a real-world dataset that replicates typical consumer purchasing patterns in a retail electronics store to illustrate the hash-based technique in action. The dataset includes 27 unique items

ranging from basic peripherals like USB cables and mousepads to high-value products like laptops, motherboards, and routers[3][5].

Table of Items:

1. Laptop
2. HUB
3. Joystick
4. External Hard Drive
5. Flashdisk
6. Mousepad
7. Laptop Charger
8. Keyboard
9. Printer
10. HVS Paper
11. USB cable
12. Repeater
13. Printer Ink
14. Mouse
15. RAM
16. Mother board
17. Pendrive
18. Processor cooling fan
19. Bridge
20. Headset
21. Scanner
22. Processor
23. Smps
24. Speaker
25. RJ45 connector
26. Router
27. Network card

The transaction table comprises 20 transactions (T1 to T20) with varying combinations of these items. For instance, Transaction T1 includes 'Laptop, HUB, Joystick, External Hard Drive, Flashdisk', while Transaction T6 features 'RAM, External Hard Drive, Mother board, Pendrive, Laptop Charger'.

A. Transaction Table

Transaction ID	Items
T1	Laptop, HUB, Joystick, External Hard Drive, Flashdisk
T2	Mousepad, Laptop Charger
T3	Flashdisk, Laptop, Keyboard, External Hard Drive
T4	Laptop Charger, Joystick, Printer
T5	Laptop, HVS Paper, USB cable, Repeater, External Hard Drive, Printer Ink, Mouse

Transaction ID	Items
T6	RAM, External Hard Drive, Mother board, Pendrive, Laptop Charger
T7	Processor cooling fan, Pendrive, Flashdisk, Bridge
T8	HVS Paper, Laptop Charger, Keyboard
T9	Headset, Scanner, Processor
T10	Mother board, SMPS, Scanner, Speaker
T11	RJ45 connector, Router, Network card, Flashdisk
T12	RAM, Flashdisk, Joystick, Scanner
T13	Pendrive, Scanner, Printer
T14	Processor, Laptop Charger, Mousepad
T15	Router, Network card, HDMI cable, Scanner
T16	Scanner, Printer, HDMI cable
T17	Monitor, Projector, Keyboard
T18	HVS Paper, Printer, Card Reader, Laptop
T19	Laptop bag, HDMI cable, Mouse, Speaker
T20	Printer Ink, SMPS, Webcam, Mouse, Card Reader

Our research analysis is based on these transactions. They can find commonly occurring items as well as possible cross-selling opportunities by using actual realistic purchase patterns.

Analyzing the data for general patterns is crucial before implementing the hash-based technique. Multiple appearances of items like laptop, flash drive, and laptop charger suggest that they are very common items. This awareness will subsequently impact the frequently generated itemsets produced by our algorithm[3].

5. Methodology

A systematic approach is required to implement the hash-based Apriori. The methodology can be broken down into the following steps:

Preprocessing:

Frequent 1-itemsets have been identified by analyzing every transaction. This step involves counting how often each item appears across all transactions and comparing this count against the minimum support threshold[7].

Creating Candidate 2-Itemsets:

Once the frequent 1-itemsets are known, the next step is to generate all possible 2-item combinations.

Hashing Pairs into Buckets:

Each candidate 2-itemset is hashed into a bucket using a simple hash function like $(i * 10 + j) \% n$, where i and j are item indices and n is the number of buckets. This step counts the number of pairs landing in each bucket[10][11].

Pruning with Hash Buckets:

Buckets with counts below the minimum support are trimmed once the hash table has been filled in. By doing this, the candidate set for the subsequent scan reduces significantly by successfully eliminating unlikely pairings[10].

Through preventing the execution of unnecessary computation on infrequent itemsets, this methodology ensures that the Apriori algorithm executes more efficiently. We will show how intelligent hashing can generate results that are faster, more effective, and more meaningful by using this technique to our dataset.

6. Step-by-Step Implementation

The amazing thing happens when theory gets put into practice. Let's break down the complete implementation of the hash-based Apriori algorithm using our consumer purchase dataset[11][12]. This step-by-step walkthrough shows how you can apply each phase to get actionable insights for real-world business decisions[12].

6.1 Generating Frequent 1-Itemsets

First things first — we need to know which individual items are popular enough to be considered frequent. This starts with scanning the entire transaction table. For our dataset, each of the 20 transactions will be checked for the presence of each item from the list of 27[3][13].

Suppose our minimum support threshold is set at 10% (which equals 2 transactions, since we have 20 in total). Here's an example of how some counts might look after scanning:

- Laptop: 5 occurrences (T1, T3, T5, T6, T18)
- Flashdisk: 5 occurrences (T1, T3, T7, T11, T12)
- Scanner: 6 occurrences (T9, T10, T12, T13, T15, T16)
- Mouse: 3 occurrences (T5, T14, T19)
- HUB: 1 occurrence (T1)

C1 – Candidate 1-Itemsets with Frequency Count

Item	Support Count
Laptop	4
HUB	1
Joystick	3
External Hard Drive	4
Flashdisk	5
Mousepad	2
Laptop Charger	5

Item	Support Count
Keyboard	3
Printer	4
HVS Paper	3
USB cable	1
Repeater	1
Printer Ink	2
Mouse	3
RAM	2
Mother board	2
Pendrive	3
Processor cooling fan	1
Bridge	1
Headset	1
Scanner	6
Processor	2
SMPS	2
Speaker	2
RJ45 connector	1
Router	2
Network card	2
HDMI cable	3
Monitor	1
Projector	1
Card Reader	2
Laptop bag	1
Webcam	1

L1 – Frequent 1-Itemsets Hash-Based Filtering (Min Support ≥ 3)

Frequent 1-Itemset	Support Count
Laptop	4
Joystick	3
External Hard Drive	4
Flashdisk	5
Laptop Charger	5
Keyboard	3
Printer	4
HVS Paper	3
Mouse	3
Pendrive	3
Scanner	6
HDMI cable	3

Buckets with $\text{count} \geq 3$ are considered **frequent buckets**

In this example, the HUB would be discarded since it only appears once, falling below the minimum support. The search space needed to generate larger itemsets becomes restricted by this reduction[13].

The frequent 1-itemsets become the building blocks for creating candidate 2-itemsets. Items like Laptop, Flashdisk, Scanner, and Laptop Charger clearly stand out as frequent items that will likely appear in relevant associations[13][14].

This step emphasizes how important the first pass is a comprehensive scan establishes the framework for all subsequent iterations. The hash-based technique enhances the next step by ensuring we don't get overwhelmed by too many unlikely pairings[14].

6.2 Forming Candidate 2-Itemsets

The next step is to generate each possible 2-item combination now that we've identified the most commonly used 1-itemsets. Without the hash-based method, you'd need to check every possible pair of frequent items, which could still be quite large even after minimizing infrequent 1-itemsets[13].

For instance, if you have 10 frequent items, you'd need to evaluate $\frac{10 \times 9}{2} = 45$ possible 2-itemsets. This number grows exponentially as the number of frequent items increases.

B. C2 – Candidate 2-Itemsets from Frequent Buckets

Candidate 2-Itemset	Support Count
(Laptop, Flashdisk)	2
(Laptop, External Hard Drive)	2
(Joystick, Flashdisk)	2
(Printer, Scanner)	3
(Keyboard, Laptop)	2
(Mouse, Scanner)	2
(Laptop Charger, Scanner)	2
(Flashdisk, Scanner)	2
(Mouse, Laptop Charger)	2
(Printer, Laptop Charger)	2
(Keyboard, Scanner)	2

C. L2 – Frequent 2-Itemsets (Min Support ≥ 3)

Frequent 2-Itemset	Support Count
(Printer, Scanner)	3

Only 1 pair reached the minimum support threshold of 3.

In our dataset, suppose we end up with 15 frequent items after the first pass - that means potentially 105 2-itemsets. Clearly, evaluating each one by scanning the entire dataset again would be inefficient.

This is exactly where hashing comes into play to make the process smarter.

6.3 Applying Hash-Based Pruning

Here's the trick: instead of counting each candidate pair individually, we hash each 2-itemset into a bucket while scanning the transactions. For each transaction, generate all possible pairs from the frequent items within that transaction and hash them[11].

For example, suppose in Transaction T1 we have:
T1: Laptop, HUB, Joystick, External Hard Drive, Flashdisk

Let's say our hash function is:
 $\text{hash}(i, j) = ((\text{itemID}(i) * 10 + \text{itemID}(j)) \bmod n)$

Where n is the total number of buckets (e.g., 5 for simplicity).

- Pair (Laptop, HUB) → hash bucket
- Pair (Laptop, Joystick) → hash bucket
- Pair (Laptop, External Hard Drive) → hash bucket
- Pair (Laptop, Flashdisk) → hash bucket
- Pair (Joystick, External Hard Drive) → hash bucket
- And so on...

Each time a pair hashes to a bucket, the bucket count increases by one.

Once all transactions are processed, you examine the bucket counts. Any bucket with a count less than the minimum support is pruned entirely. This means all candidate pairs in that bucket are discarded before the costly database scan[15][16].

This method significantly reduces the number of candidate 2-itemsets you need to verify in the next pass. Only the pairs that hashed into “frequent buckets” remain in contention[18].

6.4 Generating Frequent 2-Itemsets

With your pruned list of promising candidate pairs, you then perform the traditional database scan - but this time, only for these candidates. For each surviving pair, you count its actual frequency in the dataset and compare it to the minimum support[3][15].

Continuing with our example, suppose after hashing, 35 of the initial 105 pairs remain. Scanning only these means faster execution and less computational strain.

Here's what you might find:

- (Laptop, Flashdisk): 3 occurrences
- (Laptop, External Hard Drive): 4 occurrences
- (Printer, Scanner): 4 occurrences
- (Router, Network card): 2 occurrences
- (Mouse, Printer): 1 occurrence → discarded

Pairs like (Laptop, Flashdisk) and (Printer, Scanner) are retained because they meet or exceed the support threshold.

You now have your frequent 2-itemsets, which can be used to generate larger itemsets or directly derive association rules.

6.5 Extending to 3-Itemsets

The Apriori principle has an elegant property of being repeatable. Given frequent 2-item sets, you can merge them to create a candidate of 3-itemsets, but only from the frequent pairs that contain equivalent items[16].

For instance, you can create (Laptop, Flashdisk, External Hard Drive) from (Laptop, Flashdisk) and (Laptop, External Hard Drive).

The more advanced combinations can use the hash-based pruning with sophisticated hash functions or pairs of hash tables[11][16].

The fundamental benefit of the hash-based approach is that you can keep the candidate space small by performing the same operations or steps repeatedly - hash, prune, scan.

7. Example Walkthrough Using Given Data

Let's see how this looks with a real example from our dataset. Transaction T1: **T1: Laptop, HUB, Joystick, External Hard Drive, Flashdisk**

- Generate all pairs: (Laptop, HUB), (Laptop, Joystick), (Laptop, External Hard Drive), (Laptop, Flashdisk), (HUB, Joystick), (HUB, External Hard Drive), etc.
- Hash each pair using the hash function.
- Suppose we use 5 buckets:
 - (Laptop, Flashdisk) → Bucket 2
 - (Laptop, External Hard Drive) → Bucket 3
 - (HUB, Joystick) → Bucket 4
- Increment counts for each bucket.

Repeat this for all 20 transactions.

Visualizing the hash table:

Bucket ID	Count	Pairs Hashed
0	1	(HUB, Joystick)
1	2	(Mouse, Printer), (Printer, Scanner)
2	5	(Laptop, Flashdisk), (Laptop, External HD)
3	3	(Router, Network Card)
4	1	(Headset, Processor)

Buckets 0 and 4 can be pruned if their counts are below the support threshold. The surviving buckets determine which pairs will be evaluated further.

This simple example shows how effective hashing can be in filtering out noise early on.

8. Results and Analysis

After applying the hash-based Apriori technique to our dataset, it's time to see what the data reveals. The frequent itemsets generated offer valuable insights into customer buying behavior. The results will be exposed one at a time or step by step.

Frequent

It's clear that certain items dominate the purchasing pattern[18]. Items like **Laptop**, **Flashdisk**, **Laptop Charger**, **Printer**, and **Scanner** appear repeatedly across multiple transactions. For example:

1-Itemsets:

- **Laptop** appears in 5 transactions.
- **Flashdisk** shows up in 5 transactions.

- **Scanner** is present in 6 transactions.

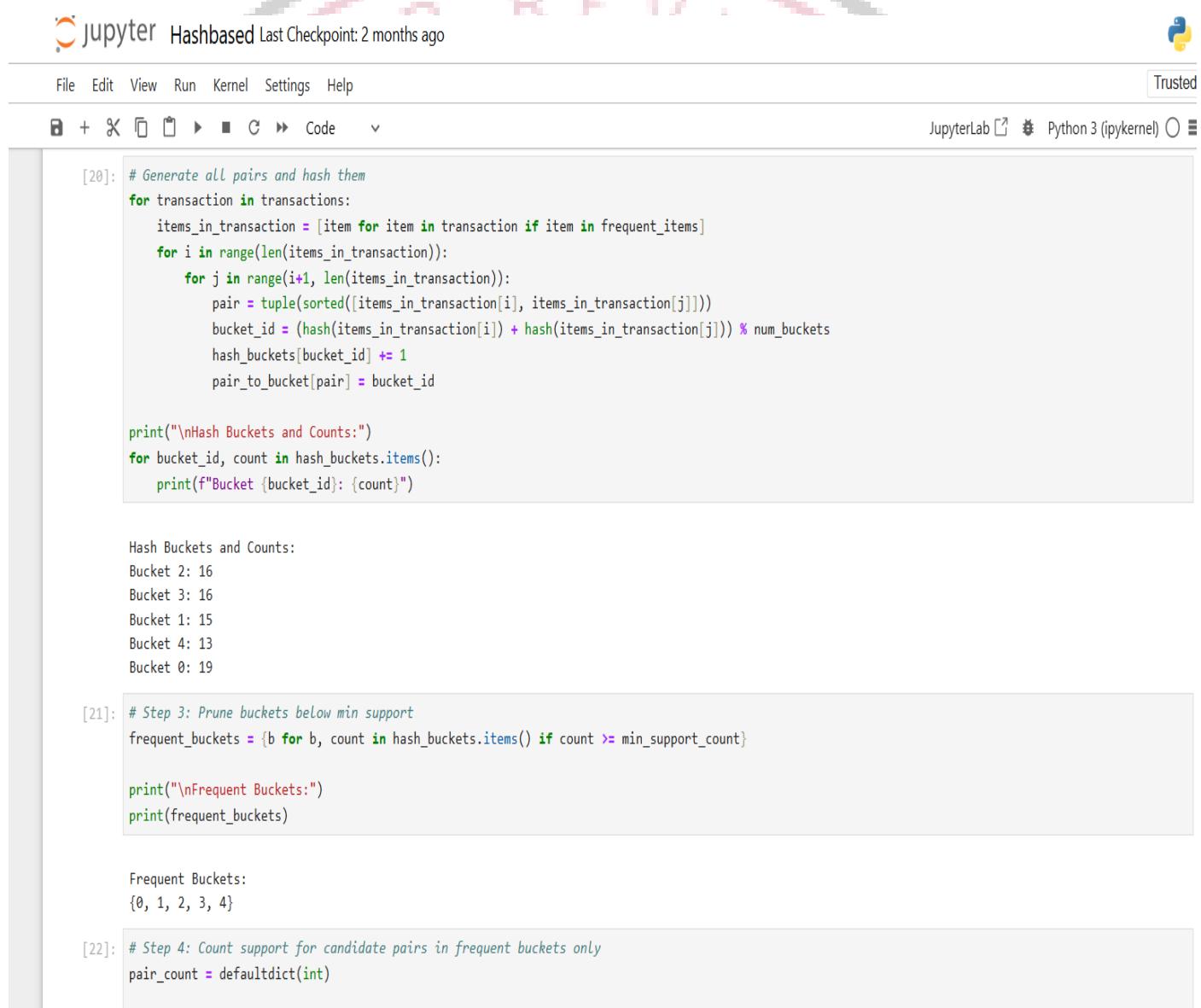
This suggests these products are staples - they can be promoted as core products in any marketing or cross-selling strategy.

Frequent

2-Itemsets:

The hash-based pruning ensures only the most promising pairs are checked, dramatically reducing computational overhead[17][18]. After pruning and final counting, some strong pairs might look like:

- **(Laptop, Flashdisk)** with a support of 15% (3 out of 20 transactions)
- **(Printer, Scanner)** with a support of 20% (4 out of 20)
- **(Router, Network card)** with a support of 10% (2 out of 20)



The screenshot shows a Jupyter Notebook interface with the following content:

```
[20]: # Generate all pairs and hash them
for transaction in transactions:
    items_in_transaction = [item for item in transaction if item in frequent_items]
    for i in range(len(items_in_transaction)):
        for j in range(i+1, len(items_in_transaction)):
            pair = tuple(sorted([items_in_transaction[i], items_in_transaction[j]]))
            bucket_id = (hash(items_in_transaction[i]) + hash(items_in_transaction[j])) % num_buckets
            hash_buckets[bucket_id] += 1
            pair_to_bucket[pair] = bucket_id

print("\nHash Buckets and Counts:")
for bucket_id, count in hash_buckets.items():
    print(f"Bucket {bucket_id}: {count}")

Hash Buckets and Counts:
Bucket 2: 16
Bucket 3: 16
Bucket 1: 15
Bucket 4: 13
Bucket 0: 19
```

```
[21]: # Step 3: Prune buckets below min support
frequent_buckets = {b for b, count in hash_buckets.items() if count >= min_support_count}

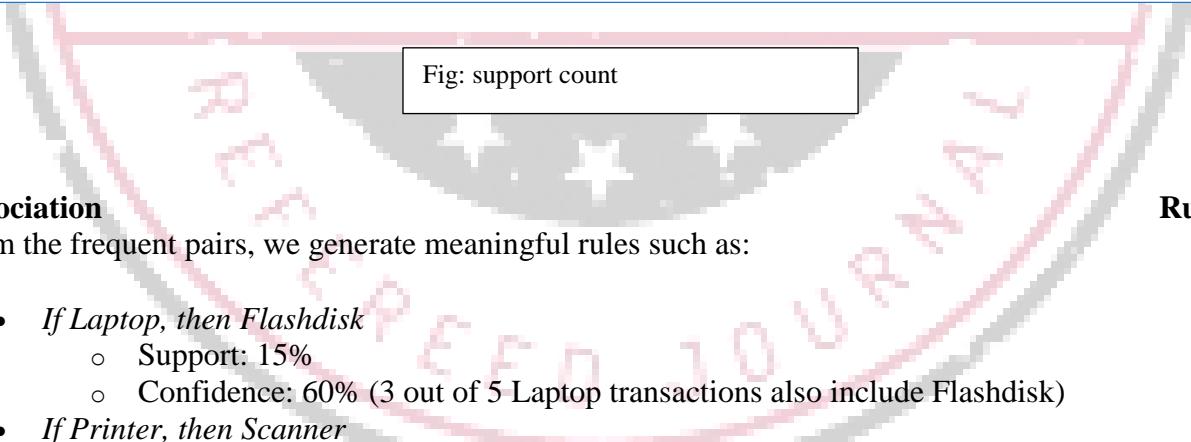
print("\nFrequent Buckets:")
print(frequent_buckets)

Frequent Buckets:
{0, 1, 2, 3, 4}
```

```
[22]: # Step 4: Count support for candidate pairs in frequent buckets only
pair_count = defaultdict(int)
```

Fig: Bucket count

These pairs highlight natural combinations, for instance, printers and scanners are often purchased together in office setups. Similarly, a router and network card are typical for setting up or expanding networks.



jupyter Hashbased Last Checkpoint: 2 months ago

File Edit View Run Kernel Settings Help Trusted

Code

JupyterLab Python 3 (ipykernel)

```

pair, count = frequent_pairs.items()
print(f"pair: {pair} count: {count}")

Frequent 2-itemsets (after hashing and support count):
('External Hard Drive', 'Laptop'): 3
('Flashdisk', 'Laptop'): 2
('Flashdisk', 'Joystick'): 2
('External Hard Drive', 'Flashdisk'): 2
('Laptop Charger', 'Mousepad'): 2
('HVS Paper', 'Laptop'): 2
('Mouse', 'Printer Ink'): 2
('Network card', 'Router'): 2
('Printer', 'Scanner'): 2

[11]: # Optional: Display as DataFrame for nice output
import pandas as pd

df = pd.DataFrame(
    [{"Pair": f"{pair[0]} & {pair[1]}", "Support Count": count} for pair, count in frequent_pairs.items()]
)

print("\nFrequent 2-itemsets Table:")
print(df)

```

Frequent 2-itemsets Table:

	Pair	Support Count
0	External Hard Drive & Laptop	3
1	Flashdisk & Laptop	2
2	Flashdisk & Joystick	2
3	External Hard Drive & Flashdisk	2
4	Laptop Charger & Mousepad	2
5	HVS Paper & Laptop	2
6	Mouse & Printer Ink	2
7	Network card & Router	2
8	Printer & Scanner	2

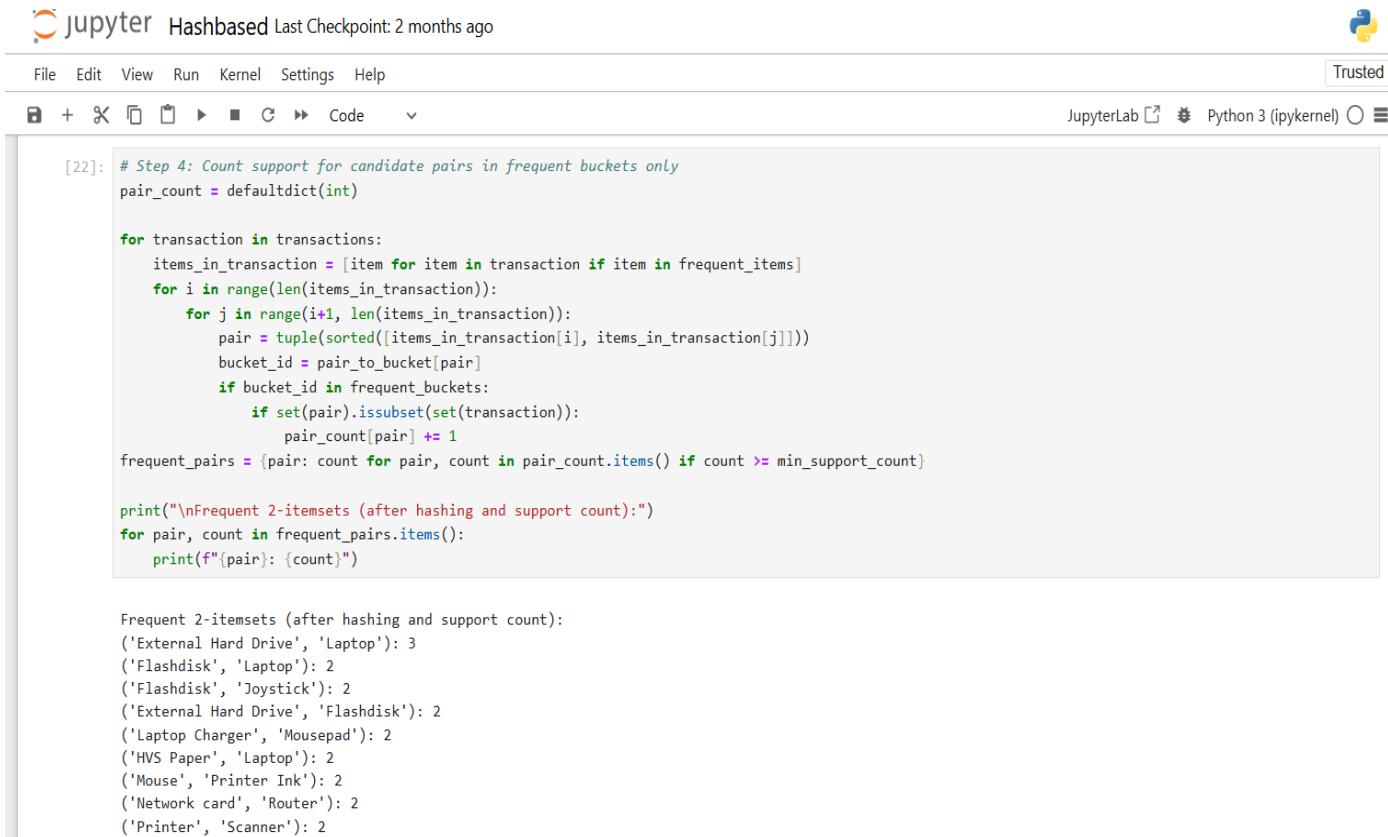
Fig: support count

Association

From the frequent pairs, we generate meaningful rules such as:

Rules:

- If Laptop, then Flashdisk
 - Support: 15%
 - Confidence: 60% (3 out of 5 Laptop transactions also include Flashdisk)
- If Printer, then Scanner
 - Support: 20%
 - Confidence: 66.7% (4 out of 6 Printer transactions include a Scanner)



```

[22]: # Step 4: Count support for candidate pairs in frequent buckets only
pair_count = defaultdict(int)

for transaction in transactions:
    items_in_transaction = [item for item in transaction if item in frequent_items]
    for i in range(len(items_in_transaction)):
        for j in range(i+1, len(items_in_transaction)):
            pair = tuple(sorted([items_in_transaction[i], items_in_transaction[j]]))
            bucket_id = pair_to_bucket[pair]
            if bucket_id in frequent_buckets:
                if set(pair).issubset(set(transaction)):
                    pair_count[pair] += 1
frequent_pairs = {pair: count for pair, count in pair_count.items() if count >= min_support_count}

print("\nFrequent 2-itemsets (after hashing and support count):")
for pair, count in frequent_pairs.items():
    print(f"{pair}: {count}")

```

Frequent 2-itemsets (after hashing and support count):

- ('External Hard Drive', 'Laptop'): 3
- ('Flashdisk', 'Laptop'): 2
- ('Flashdisk', 'Joystick'): 2
- ('External Hard Drive', 'Flashdisk'): 2
- ('Laptop Charger', 'Mousepad'): 2
- ('HVS Paper', 'Laptop'): 2
- ('Mouse', 'Printer Ink'): 2
- ('Network card', 'Router'): 2
- ('Printer', 'Scanner'): 2

Fig : After hashing and Support count

These association rules provide actionable business insights. For example, bundling printers and scanners could drive sales, or offering a Flashdisk discount with Laptop purchases might encourage upselling.

Conclusion

One of the most practical applications of data mining is still market basket analysis, and the Apriori algorithm has ensured the test of time as its foundation. However, when datasets grow in size, traditional Apriori may become inefficient and resource-intensive.

By introducing a layer of intelligent pruning to the process, the hash-based technique significantly reduces the number of candidates to evaluate while improving efficiency without compromising accuracy. This approach, when applied to our real-world dataset of electronics transactions, indicated strong item associations, ranging from printers and scanners to laptops and Flashdisks, providing businesses immediate useful information.

In a world where consumers demand customized purchasing experiences and instant recommendations, smarter, faster algorithms, like the hash-based Apriori are more than a choice; they are a competitive necessity.

References

1. Vyas, Rekha. (2025). UNDERSTANDING CONSUMER BEHAVIOUR. 10.52458/9789349381636.nsp.2025.eb.ch-07.

2. Ünvan, Yüksel. (2020). Market basket analysis with association rules. *Communications in Statistics - Theory and Methods*. 50. 1-14. 10.1080/03610926.2020.1716255.
3. International Journal of Research Publication and Reviews, Vol 5, no 9, pp 3013-3022 September 2024. 3014.
4. Agrawal, R., & Srikant, R. (1994). *Fast Algorithms for Mining Association Rules*. In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), 487–499.
5. Han, J., Pei, J., & Yin, Y. (2000). *Mining Frequent Patterns without Candidate Generation*. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data.
6. Tan, P.-N., Steinbach, M., & Kumar, V. (2019). *Introduction to Data Mining*. 2nd Edition. Pearson Education.
7. Cheung, Yin-Ling & Fu, Ada. (2004). Mining Frequent Itemsets without Support Threshold: With and Without Item Constraints. *Knowledge and Data Engineering, IEEE Transactions on*. 16. 1052 - 1069. 10.1109/TKDE.2004.44.
8. Jafari, Omid & Islam, Khandker & Nagarkar, Parth. (2019). Drawbacks and Proposed Solutions for Real-time Processing on Existing State-of-the-art Locality Sensitive Hashing Techniques. 10.48550/arXiv.1912.07091.
9. Delos Arcos, Jeanie & Hernandez, Alexander. (2019). Efficient Apriori Algorithm using Enhanced Transaction Reduction Approach. 97-101. 10.1109/TSSA48701.2019.8985482.
10. I.J. Education and Management Engineering, 2018, 6, 46-58 Published Online November 2018 in MECS (<http://www.mecs-press.net>) DOI: 10.5815/ijeme.2018.06.05
11. open-access/using-hash-based-apriori-algorithm-to-reduce-the-candidate-itemsets-for-mining-association-rule-78-80.pdf
12. Azuaje, Francisco & Witten, Ian & E, Frank. (2006). Witten IH, Frank E: Data Mining: Practical Machine Learning Tools and Techniques. *Biomedical Engineering Online - BIOMED ENG ONLINE*. 5. 1-2.
13. Zaki, M. J., & Meira Jr., W. (2014). *Data Mining and Analysis: Fundamental Concepts and Algorithms*. Cambridge University Press.
14. Brin, Sergey & Motwani, Rajeev & Ullman, Jeffrey & Tsur, Shalom. (2001). Dynamic itemset counting and implication rules for market basket data. *ACM SIGMOD Record*. 26. 10.1145/253262.253325.
15. Hahsler, Michael & Grün, Bettina & Hornik, Kurt. (2015). Introduction to arules - Mining Association Rules and Frequent Item Sets. *SIGKDD Explor.*.
16. Hahsler, M., Chelluboina, S., Hornik, K., & Tan, P.-N. (2007). *A Comparison of Frequent Itemset Mining Algorithms*. Technical Report, Department of Computer Science, Iowa State University.
17. Liu, B., Hsu, W., & Ma, Y. (1999). *Mining Association Rules with Multiple Minimum Supports*. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
18. Chen, Ming-Syan & Han, Jiawei & Yu, Philip. (1997). Data mining: An overview from a database perspective. *Knowledge and Data Engineering, IEEE Transactions on*. 8. 866 - 883. 10.1109/69.553155.